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LElTER TO THE EDITOR 
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Abstract. Time evolution of squeezed states in the quantum kicked rotator model is 
analysed. Squeezing influences the shape of quantum revivals obtained in the regime of 
classically regular motion, but does not facilitate the diffusion in angular momentum in 
the regime of classically chaotic motion. The speed of unlimited energy growth, which 
occurs in the case of quantum resonance, depends significantly on the squeezing parameter. 

Time-dependent studies of classically chaotic quantum systems were typically perfor- 
med by applying the pure momentum eigenstates [ 1,2] or standard coherent states 
[3,4]. Problems of detection of gravitational waves suggested a new class of states, 
the squeezed states, which fulfil the uncertainty relation with reduced dispersion in 
one variable [ 5 ] .  Squeezed states have been intensively studied recently in quantum 
optics (the current status of research on squeezed states is presented in [ 6 ] ) .  In this 
letter the behaviour of squeezed states in a quantum chaotic system is discussed. 

We analyse the time evolution of squeezed states in the frequently studied model 
of a periodically kicked quantum rotator [ 1-3,7].  This system is defined by the 
Hamiltonian: 

/=ac 

(1) 
K 

H=p2/2--cos(27lq) t j ( t - 1 )  
271 I=-m 

where q and p are scaled angle and angular momentum variables, respectively, K is 
a kicking strength parameter, the rotator mass and kicking period are equal to 1 .  
Expanding the wavefunction q in terms of the eigenstates of H,, = p 2 / 2  as 

we obtain a quantum map: a‘,“”=X, aj”UL. The infinite matrix of the evolution 
operator fi is given by [ l ]  

U:, = exp( - i j ’2 . i r~ ) i” - ’~ - , (k )  (3) 
where T = f i / 4 i ~ ,  k = K / 4 m  and J , ( x )  is the ordinary Bessel function of the first kind 
and order r. The kicking strength parameter K governs the motion of the corresponding 
classical model. For K = 1 the last KAM orbit breaks down, and the unlimited diffusion 
in energy takes place (see [8] for a review of the classical standard map). The dynamics 
of the quantum system is much more complicated, and depends on two relevant 
parameters. For any rational value of T the energy growth caused by the quantum 
resonance is unbounded in time [9], while for all irrational T values, the energy remains 
limited for any initial conditions and values of K [2]. 

We construct appropriate squeezed states generalising the Gaussian coherent states 
introduced by Chang and Shi [3] for the case of periodic variable q. With each point 
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{ p o ,  90} of the classical phase space we associate the corresponding squeezed state 
19;b.qo) defined by the set of expansion coefficients a,, 

a, := (T e2R)-1’4exp[i(bc-fi bn)] exp - -- [e.: (A .)*I (4) 

where b = ird?qO, c = w a p , / h ,  and R is an arbitrary squeezing parameter. For 
negative R values the state is squeezed in momentum ( A p  < A q ) ,  for positive R values 
the state is squeezed in the angular coordinate ( A 9  < A p ) ,  and for R = 0 we recover 
the standard Gaussian coherent states. 

Let us consider the case of classically regular motion. For a small value of the 
perturbation parameter K and the initial point { p o ,  qo} lying outside resonances in 
the phase space the classical orbit forms a slightly distorted line p = p o .  In this case 
the time evolution of the angular momentum exhibits regular oscillations, with their 
period depending on p o .  In order to compare the behaviour of the quantum state 
localised in the finite volume proportional to h, one can take an ensemble of classical 
points lying in the vicinity of the point { p o ,  qo}, and analyse the angular momentum 
averaged over all points of the ensemble. 

Since the vibrations of slightly different frequencies dephase, the oscillations of 
averaged momentum are damped and the average tends to a constant value. In the 
corresponding quantum system the oscillations of the expectation value of momentum 
are damped as in the classical model, but after a certain time T, the oscillations appear 
again. This phenomenon, called quantum revival [lo-121, is caused by the discrete 
structure of the energy levels. The revival time T, is proportional to 1/h, and tends 
to infinity in the semiclassical limit. 

localised on the point { p o ,  9 0 } ,  and for three different values of the squeezing parameter 
R, is presented in figure 1. Numerical results show the influence of squeezing on the 
shape of revivals. For greater R values, squeezing is stronger in angle, so the dispersion 
of angular momentum is larger. Frequencies of oscillations dephase faster and revivals 
are more prominent. A similar effect was recently reported in the modified Jaynes- 
Cummings model [ 131. 

In the classical system for a strong enough perturbation (i.e. K > 1) the unbounded 
diffusion in angular momentum appears [8]. The classical orbits can cross cantori-the 
remnants of the last K A M  tori. In  the corresponding quantum system the average 
momentum remains bounded for an arbitrary large value of the perturbation parameter 
K. Following an intuitive approach, a coherent state occupying finite volume in the 
phase space is too ‘fat’ to cross small gaps in cantori. Since it is easier to throw a 
javelin through a net than a ball of the same volume, one could speculate that the 
squeezed states may move in the phase space easier than the corresponding coherent 
states. 

Numerical results, however, do not confirm this hypothesis. Even for a very long 
time of evolution the averaged angular momentum remains in the vicinity of the initial 
value pa, and does not depend on the squeezing parameter R. Those results are not 
surprising, since during time evolution the squeezed state rotates in the phase space 
[14] and spreads over neighbouring regions of the phase space, losing its original 
shape [ 151. 

The analysis of the expansion of an initial quantum state in the basis of the 
quasienergy eigenstates (eigenstates of the matrix U )  provides an additional piece of 
information. The number, M, of eigenstates relevant in such an expansion characterises 

The time evolution of the average momentum ( p ( t ) )  for the initial state 
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Figure 1. Time evolution of angular momentum for the initial state po=O.l, Q ~ = O . O ;  
K = 0.02, A = 0.03767. The squeezing parameter R is equal to ( a )  -0.22, ( b )  0.47 and (c) 
1.16. 
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Time 

Figure 2. Energy growth in the resonance case h = ' 1 ~  for K = 1.5, po=O.l, q=O.47 and 
for three values of the squeezing parameter R. 

the properties of motion of a quantum state [4]. Our calculations indicate that the 
number of relevant eigenstates M does not depend significantly on the squeezing 
parameter R, so squeezing cannot change the general properties of the time evolution 
of a coherent state. 

In the particular case of a rational value of the Planck constant h = r / s ;  r, s E N, 
quantum resonance occurs [9]. The averaged energy of a quantum state grows quadrati- 
cally in time 

( E )  - wt' ( 5 )  

and the factor w decreases with an increasing denominator s of the irreducible fraction 
r / s .  The energy growth is caused by an increase of the dispersion in momentum (Ap), 
while the average momentum (p) remains bounded. Thus also in the case of a quantum 
resonance a coherent state does not move along the momentum axis, but only spreads 
in the phase space. 

As is well known [ 161, a Gaussian wavepacket representing a single particle spreads 
during the free evolution, and the dispersion of momentum Ap grows with the speed 
proportional to the initial dispersion of position Ax. Squeezed states in the system 
investigated exhibit the similar feature only in the case of quantum resonance: the 
diffusion factor w decreases with the squeezing parameter R-see figure 2. For large 
dispersion in momentum of the initial state (squeezing in angle) further energy (disper- 
sion) growth is relatively slow. On the other hand, the resonant diffusion occurs faster 
for initial states squeezed in angular momentum, i.e. for initial states occupying a 
smaller number of momentum eigenstates In). 

This work was supported in part by the Polish Government Grant no CPBP.01.07. I 
am grateful to J Mostowski and J Zakrzewski for encouragement and stimulating 
discussions. 
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